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Cognitive neuroscientists have been grappling with two related experimental design problems. First, the complex- 

ity of neuroimaging data (e.g. often hundreds of thousands of correlated measurements) and analysis pipelines 

demands bespoke, non-parametric statistical tests for valid inference, and these tests often lack an agreed-upon 

method for performing a priori power analyses. Thus, sample size determination for neuroimaging studies is often 

arbitrary or inferred from other putatively but questionably similar studies, which can result in underpowered 

designs – undermining the efficacy of neuroimaging research. Second, when meta-analyses estimate the sample 

sizes required to obtain reasonable statistical power, estimated sample sizes can be prohibitively large given the 

resource constraints of many labs. We propose the use of sequential analyses to partially address both of these 

problems. Sequential study designs – in which the data is analyzed at interim points during data collection and 

data collection can be stopped if the planned test statistic satisfies a stopping rule specified a priori – are common 

in the clinical trial literature, due to the efficiency gains they afford over fixed-sample designs. However, the 

corrections used to control false positive rates in existing approaches to sequential testing rely on parametric 

assumptions that are often violated in neuroimaging settings. We introduce a general permutation scheme that 

allows sequential designs to be used with arbitrary test statistics. By simulation, we show that this scheme con- 

trols the false positive rate across multiple interim analyses. Then, performing power analyses for seven evoked 

response effects seen in the EEG literature, we show that this sequential analysis approach can substantially 

outperform fixed-sample approaches (i.e. require fewer subjects, on average, to detect a true effect) when study 

designs are sufficiently well-powered. To facilitate the adoption of this methodology, we provide a Python pack- 

age “niseq ” with sequential implementations of common tests used for neuroimaging: cluster-based permutation 

tests, threshold-free cluster enhancement, t- max, F -max, and the network-based statistic with tutorial examples 

using EEG and fMRI data. 
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. Introduction 

Recently, many scientific fields have been placing a renewed em-

hasis on issues of sample size determination and statistical power.

his emphasis is motivated, in large part, by an increased apprecia-

ion of the fact that the positive predictive value of a study – that is,

he probability that an effect is actually “true ” given a statistically sig-

ificant result – is directly proportional to the statistical power of the

tudy ( Ioannidis, 2005 ). This methodological concern came into focus

n the neurosciences after a landmark review in 2013 estimated that

he median statistical power of neuroscience studies is between 8% and

1%, suggesting that many neuroscience studies provide low eviden-

iary value despite satisfying conventional standards of statistical evi-

ence ( Button et al., 2013 ). 

The average statistical power of neuroimaging studies, in particu-

ar, has been steadily improving; however, low statistical power is cited

s one of the largest threats to the replicability of findings in cogni-
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ive neuroscience ( Poldrack et al., 2017 ). The availability of large, open

atasets such as the Human Connectome Project ( Van Essen et al., 2013 )

nd tools for extracting metadata from published neuroimaging studies

uch as NeuroSynth ( Yarkoni et al., 2011 ) have enabled empirical esti-

ates of power in the field. As a result, we now know that the effect

izes one can realistically expect in neuroimaging studies are usually

uite small, and many published neuroimaging studies are too small to

etect them ( Poldrack et al., 2017 ). Indeed, a recent analysis has sug-

ested that certain types of neuroimaging biomarkers may even require

housands of subjects to detect reliably ( Marek et al., 2022 ), though other

esearchers have been quick to point out that not all analytic approaches

equire such prohibitive sample sizes to establish robust brain-behavior

elationships ( Rosenberg and Finn, 2022 ). In any event, the costs of do-

ng well-powered neuroimaging research can be substantial. 

In light of these field-wide concerns, it is increasingly acknowledged

hat researchers should determine their sample-size in a rigorous, non-

rbitrary manner; the use of heuristics, such as adapting the same sam-
23 
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v  

s  
le size as a previous study, is likely to result in an underpowered design

 Poldrack et al., 2017 ). Some efforts – notably Neuropower, Fmripower,

nd PowerMap – have provided researchers with the tools to perform

ower analyses for the parametric random-field theory approaches used

n fMRI ( Durnez et al., 2016 ; Joyce and Hayasaka, 2012 ; Mumford and

ichols, 2008 ). However, these tools remain limited relative to the scope

f statistical tests employed in the broader neuroimaging literature. In

articular, many of the statistical tests used in neuroimaging – cluster-

ased permutation tests ( Maris and Oostenveld, 2007 ), threshold-free

luster enhancement ( Smith and Nichols, 2009 ), the network-based

tatistic ( Zalesky et al., 2010 ), and t -max ( Nichols and Holmes, 2002 ),

o name a few – are non-parametric, and thus parametric power anal-

sis procedures are inapplicable (though a power analysis may be per-

ormed by simulation or resampling). Moreover, even in cases in which

 validated method for performing a power analysis would be straight-

orward, specifying an “effect size ” is not as simple as for univariate

ests, in which power analyses are performed with standardized effect

ize measures (e.g. Cohen’s d ); neuroimaging analyses are often per-

ormed on aggregate properties of spatiotemporal maps, not necessarily

n specific voxels. Indeed, an effect map (which would be difficult to

redict a priori) is often precisely what the researcher is trying to esti-

ate when they are designing their experiment. Moreover, even in the

nivariate case, obtaining a reasonably precise effect size estimate usu-

lly requires a larger sample size than that required to merely detect

n effect ( Albers and Lakens, 2018 ; Lakens and Evers, 2014 ), and it un-

erstandably belies most researchers’ intuition to collect a pilot sample

arger than their confirmatory study. 

Most published fMRI and EEG studies still do not include a sample

ize justification, likely due to the substantial challenges associated with

erforming a power analysis described above. For instance, out of 100

linical fMRI studies randomly sampled from six leading journals, only

 single study reported a sample size calculation ( Guo et al., 2014 ). Sim-

larly, 0 out of 100 randomly sampled studies from the EEG literature

eported sample size calculations ( Larson and Carbine, 2017 ). We do

ot believe that this omission results from researchers’ lack of desire to

o more rigorous science, but rather it is the result of a lack of method-

logical approaches and tools that meet their specific research needs.

ndeed, when reviewers for granting agencies such as NSF and NIH re-

uest sample size calculations for proposed research, PIs may scramble

o find a way of estimating these, whether rigorous or not. 

One alternative researchers may find tempting is to forgo an a

riori sample size determination and analyze data multiple times

hroughout the course of data collection, stopping data collection only

nce a significant result is found. Indeed, many researchers in psy-

hology admit to employing this practice known as optional stopping

 John et al., 2012 ), one of a laundry list of “questionable research

ractices ” such as “p- hacking ” that have come under criticism in re-

ent years ( de Vrieze, 2021 ). However, optional stopping results in in-

ated false-positive rates; for instance, if one analyzes the data five

imes throughout data collection without adjusting their significance

hreshold of 𝛼 = 0 . 05 , the false positive rate rises to an undesired 0.142

 Armitage et al., 1969 ). Again, however, we do not believe researchers

dmit to optional stopping because of a negligent disregard for research

est-practices, but because of a desire to preserve time and resources,

topping data collection as soon as there is sufficient evidence to reach

 conclusion. Indeed, one could argue researchers have an ethical obli-

ation to use (often taxpayer-funded) resources efficiently and to limit

he burden on the human subject populations that volunteer for their

xperiments. 

Fortunately, valid sequential analysis techniques, which use adjusted

ejection thresholds at each interim analysis to control the false positive

ate across the whole experiment, have existed for the better part of

 century ( Dodge and Romig, 1929 ; Wald, 1992 ). Sequential study de-

igns have long been recognized to possess efficiency advantages over

xed-sample designs, allowing a conclusion to be reached with fewer

bservations on average ( Dodge and Romig, 1929 ). The reason for this
2 
fficiency advantage is straightforward. For instance, if one analyzes the

ata once at a sample size 𝑛 1 where there is a 50% chance of rejecting

he null hypothesis and once at 𝑛 2 when there is a 95% chance of re-

ection, then the expected sample size at which a conclusion is reached

ould likely end up somewhere between 𝑛 1 and 𝑛 2 , since the probability

f rejection at 𝑛 1 is substantial. 

While early approaches to sequential analysis required data to be an-

lyzed after every observation or, alternatively, the exact number and

iming of looks at the data to be specified a priori (a group sequen-

ial analysis), which was somewhat limiting for studies where the fi-

al subject yield may not be known until the data are analyzed (e.g.

fter quality check of neuroimaging data), a later approach known as

lpha spending requires only that a maximum sample size (that is, the

ample size at which data collection will be terminated even if a signif-

cant result has not been reached) be specified ahead of time ( Lan and

eMets, 1983 ). This approach is heavily used in the clinical trial liter-

ture and has recently attracted attention as a means of improving the

fficiency of experimental psychology studies as well ( Lakens, 2014 ).

hile we believe the general alpha spending approach is sufficiently

exible to meet the practical demands of neuroimaging studies, the ad-

usted significance thresholds it prescribes for interim analyses are only

alid assuming test statistics across looks follow a multivariate normal

istribution ( Lan and DeMets, 1983 ), an assumption that is violated by

any of the test statistics in neuroimaging. 

To this end, we propose a permutation-based version of the al-

ha spending procedure. This procedure allows sequential analyses

o be performed using arbitrary test statistics, and we show by sim-

lation that it controls the false positive rate while doing so. Since

any hypothesis tests and multiple-comparisons corrections used in

ognitive neuroscience are already permutation-based, they can be

aturally generalized into valid sequential tests. Thus, we were able

o implement sequential generalizations of cluster-based permutation

ests ( Maris and Oostenveld, 2007 ), threshold-free cluster enhancement

 Smith and Nichols, 2009 ), t -max and F -max corrections ( Nichols and

olmes, 2002 ), and the network-based statistic ( Zalesky et al., 2010 ). As

uch, the proposed approach to sequential-testing can be easily applied

o task EEG and fMRI, functional connectivity, diffusion tractography,

nd voxel-based morphometry data. 

This sequential testing approach affords several routes to principled

ample size determination that were previously unavailable to human

euroscience researchers. (1) One approach is to specify a very conser-

ative maximum sample size; if the maximum sample is overly conserva-

ive, one will reject the null hypothesis at an interim analysis with high

robability. (2) Another approach is to use an adaptive design , in which

he maximum sample size can be adjusted as a result of a conditional

ower analysis performed at an interim analysis ( Lakens et al., 2021 ). In

his case, the first interim analysis can serve as an internal pilot study,

sed to estimate the effect size with which a power analysis is performed

which can be done very generally via resampling methods). However,

f enough evidence has already been accrued at that interim analysis

o reject the null hypothesis, then data collection can be concluded. (3)

astly, even if a researcher has everything needed to perform an a priori

ample size calculation, it may still be advantageous to use a sequential

esign so that data collection can be terminated early if enough evidence

as been accrued to reject the null hypothesis. We show that, like para-

etric alpha spending, our approach can be substantially more efficient

han fixed-sample designs for studies that are sufficiently well-powered.

. Methods 

.1. Alpha spending 

.1.1. General description 

In an alpha spending procedure, one must decide two things in ad-

ance of beginning data collection. (1) One must specify a maximum

ample size after which data collection will be stopped, regardless of
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Fig. 1. An example of an alpha spending procedure with a linear spending func- 

tion. At each interim analysis, an adjusted significance level 𝛼 is computed that 

controls the cumulative Type I error, given the previous interim analyses, to the 

value specified by the alpha spending function. In this example, data collec- 

tion would be stopped at 𝑛 = 20 , where the observed p- value drops below the 

adjusted 𝛼. 

Fig. 2. Examples of common alpha spending functions. Spending functions all 

start at 0 and end at the user-specified false positive (Type I error) rate, but they 

vary in how they distribute Type I error across interim analyses. 
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i  
hether the null hypothesis has been rejected. We will call this design

arameter 𝑛 T throughout this article, where 𝑇 denotes the total number

f interim analyses. Note, however, that 𝑇 does not need to be deter-

ined before the study begins, only 𝑛 𝑇 = 𝑛 max . (2) Additionally, one

ust define a desired Type I error rate 𝛼 and an alpha spending function

hat specifies how the Type I error rate will be distributed across interim

nalyses. Specifically, an alpha spending function 𝑠 ( 𝑛 ) is a monotonically

on-decreasing function that specifies a target value for the cumulative

ype I error by interim sample size 𝑛 . Consequently, the function 𝑠 must

lso satisfy 𝑠 (0) = 0 and 𝑠 ( 𝑛 T ) = 𝛼 for the desired significance level 𝛼,

uch that the Type I error rate is contained to 𝛼 at 𝑛 T . Within these con-

traints, any function 𝑠 ∶ ℝ 1 → ℝ 1 (i.e. that maps a real number to a

eal number) could be specified. 

Suppose the data are analyzed at each of the successive interim sam-

le sizes { 𝑛 𝑡 } 
𝑇 

𝑡 = 1 . (This notation more concisely denotes a set contain-

ng ordered interim sample sizes 𝑛 1 , 𝑛 2 , … , 𝑛 𝑇−1 , 𝑛 𝑇 for an arbitrary

ositive integer 𝑇 .) At each interim sample size 𝑛 𝑖 , then, the data are

 𝑡 = { 𝑥 𝑗 } 
𝑛 𝑡 

𝑗 = 1 (where the index of 𝑥 𝑖 , importantly, denotes the order in

hich the observation was collected rather than being a random index)

ith condition labels (or covariate of interest) 𝑌 𝑡 = { 𝑦 𝑗 } 
𝑛 𝑡 

𝑗 = 1 , and the

est statistic is 𝐹 𝑡 = 𝑓 ( 𝑋 𝑡 , 𝑌 𝑡 ) , where 𝑓 is some function that computes

he test statistic from the data. 

We need to determine some threshold 𝐹 ∗ 
𝑖 

at each interim analysis

hat will contain the cumulative Type I error, given all the previous

ooks, to 𝑠 ( 𝑛 𝑡 ) . That is, for each interim analysis 𝑡 ∈ [ 1 , 𝑇 ] , we select 𝐹 ∗ 
𝑡 

o as to satisfy Equation 1 under the null hypothesis. 

 

(
𝑛 𝑡 
)
= 𝑃 

( 

𝑗=1 
∪
𝑡 
𝐹 𝑗 ≥ 𝐹 ∗ 

𝑗 

) 

(1)

Note that the right side of Equation 1 can be expanded as in Equation

. 

 

( 

𝑗=1 
∪
𝑡 
𝐹 𝑗 ≥ 𝐹 ∗ 

𝑗 

) 

= 𝑃 
(
𝐹 𝑡 ≥ 𝐹 ∗ 

𝑡 

)
+ 𝑃 

( 

𝑗=1 
∪
𝑡 −1 

𝐹 𝑗 ≥ 𝐹 ∗ 
𝑗 

) 

− 𝑃 

( 

𝐹 𝑡 ≥ 𝐹 ∗ 
𝑡 
∩

𝑗=1 
∪
𝑡 −1 

𝐹 𝑗 ≥ 𝐹 ∗ 
𝑗 

) 

(2) 

It is this joint probability on the right side of Equation 2 that can be

ifficult to compute, but it will almost certainly be nonzero since the

 𝑡 ’s are computed from overlapping data. In the parametric approach

o alpha spending introduced by Lan and DeMets, the joint distribution

f the test statistics { 𝐹 𝑡 } 
𝑇 

𝑡 = 1 is assumed to be multivariate normal un-

er the null hypothesis, which allows appropriate rejection thresholds

 𝐹 ∗ 
𝑡 
} 𝑇 
𝑡 = 1 to be computed exactly. In the event that this normality as-

umption is violated, these thresholds must be estimated in some other

ay. 

Note that, by plugging the rejection thresholds { 𝐹 ∗ 
𝑡 
} 𝑇 
𝑡 = 1 into the

umulative distribution function of 𝐹 𝑡 under the null hypothesis, it is

ossible to obtain adjusted significance levels { 𝛼𝑡 } 
𝑇 

𝑡 = 1 for each look

ime. It is common to provide these adjusted significance levels when

eporting the results of a sequential analysis ( Lakens et al., 2021 ). An

xample of adjusted signifance levels for a sequential design, as deter-

ined by an alpha spending procedure, is visualized in Fig. 1 . pvalues 

.1.2. Common spending functions 

As noted above, there is considerable flexibility in the selection of

n alpha spending function 𝑠 ( 𝑛 ) ; any function that satisfies the con-

traints specified in the above section will be adequate. However, it is

orth mentioning a few common spending functions used in the liter-

ture, visualized in Fig. 2 . Lan and DeMets introduced two spending
3 
unctions, the Pocock and O’Brien Fleming spending functions ( Lan and

eMets, 1983 ). The Pocock spending function “spends ” the Type I error

ate more liberally early during data collection, so it is more likely to

eject the null hypothesis early on if the effect size is large. The O’Brien

leming spending function, on the other hand, “saves ” its Type I error

llotment for later during data collection when there is more power to

etect a given effect, so while it is less likely to terminate very early if

he effect size is unexpectedly large, it may be more likely to reject the

ull hypothesis at an interim analysis overall. A linear spending func-

ion, which falls somewhere between those two, distributed the error

ate evenly across data collection. We recommend consulting Lakens

nd colleagues’ tutorial on group sequential designs for a more thor-

ugh discussion and comparison of adjusted alpha thresholds between

pending functions ( Lakens et al., 2021 ). 

.1.3. Inflation factors and expected sample size 

Generally speaking, if one wants to design a study using alpha spend-

ng that has the same statistical power as a given fixed sample design
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ith sample size 𝑛 f ixed , then the maximum sample size 𝑛 𝑇 for the sequen-

ial design will need to be greater than 𝑛 f ixed . The ratio 𝑛 𝑇 ∕ 𝑛 f ixed required

or the two designs to have matched power is called the inflation factor,

nd it depends on the alpha spending function, the number and timing

f interim analyses, and the desired statistical power. However, usefully,

t does not depend on 𝑛 f ixed , the effect size, or the statistical test used. 

Even more usefully, the inflation factors for parametric alpha

pending designs are known exactly, and they can be easily obtained

rom open-source statistical software such as rpact ( Wassmer and

ahlke, 2020 ). While these inflation factors are not theoretically guaran-

eed to apply to the permutation alpha spending approach we describe

elow, empirically they seem to work quite well (see our simulation

esults below). 

While the inflation factor 𝑛 𝑇 ∕ 𝑛 f ixed needed to obtain matched statis-

ical power may generally be greater than one (i.e. the maximum sam-

le size for the sequential design must be larger than the fixed-sample

esign), this inflation is offset by the fact that sequential designs have

he opportunity to reject the null hypothesis at an interim analysis and

herefore 𝑛 𝑇 observations may never actually be collected. The expected

ample size of a sequential design, then, differs from the maximum sam-

le size. 

The expected sample size depends on the power of the sequential

esign. If the study is sufficiently well powered, the probability of de-

ecting the effect early is high and the expected sample size is often sub-

tantially lower than the corresponding fixed-sample design’s sample

ize; if, conversely, the design is very poorly powered, then the experi-

ent will likely be run to completion without detecting the effect and

he expected sample size will be close to 𝑛 𝑇 . The expected sample size

f a given sequential design, as a function of statistical power, can be

ound exactly for parametric alpha spending designs and can be easily

btained from software packages like rpact. 

.2. Permutation alpha spending 

We propose a permutation-based procedure to infer the co-

ependence term in Equation 2 (the intersection probability following

he minus sign) implicitly from the data. Conceptually, this is similar to

ow permutation-based approaches for controlling the familywise error

ate outperform parametric approaches (e.g. Bonferroni correction) in

he event that one’s multiple tests are correlated, since the covariance

etween test statistics is implicitly accounted for because that correla-

ion structure is preserved in the empirical null distribution generated

y permutating the data ( Nichols and Holmes, 2002 ). That is, the per-

utation null is a joint null distribution. 

Let 𝐻 0 be a 𝐾 × 𝑇 matrix, where 𝐾 is the number of permutations

e decide to perform. We want to populate the matrix 𝐻 0 with the joint

ull distribution of the test statistic across the 𝑇 interim analyses, which

e will empirically estimate by permutation. 

Then for each permutation 𝑘 ∈ [ 1 , 𝐾 ] and each 𝑡 ∈ [ 1 , 𝑇 ] , 

1. Let 𝑌 ∗ 
𝑡 
= { 𝑌 ∗ 

𝑡 −1 ∪shuff led ( { 𝑦 𝑗 } 
𝑛 𝑡 

𝑗 = 𝑛 ( 𝑡 −1 ) + 1 ) } , where 𝑌 ∗ 0 is an empty

set. 

2. Set 𝐻 

( 𝑘, 𝑡 ) 
0 = 𝑓 ( 𝑋 𝑡 , 𝑌 

∗ 
𝑡 
) 

Note that Step 1 above implies that any observation 𝑥 𝑖 has the same

huffled label at all times 𝑡 ∈ [ 1 , 𝑇 ] on a given permutation 𝑘 . Without

his feature, 𝐻 0 will not be a joint distribution. If one is performing a

ne-sample test instead of an independent-samples tests, then the signs

f the 𝑥 𝑖 ’s are randomly flipped instead of shuffling their 𝑦 𝑖 labels. (And

imilarly, a paired-sample test is just a one-sample test on the paired dif-

erences, so the signs of the differences are flipped, which is equivalent

o randomly shuffling the labels within the pairs.) 

One can then estimate the rejection thresholds from 𝐻 0 as follows. 

• Pick 𝐹 ∗ 1 such that only 100 ⋅ 𝑠 ( 𝑛 1 ) percent of the values in 𝐻 

( ∶ , 1 ) 
0 (i.e.

the first column of 𝐻 0 ) surpass 𝐹 ∗ 1 . 
4 
• In ascending order of 𝑡 , pick each 𝐹 ∗ 
𝑡 

such that only 100 ⋅ 𝑠 ( 𝑛 𝑡 ) percent

of permutations 𝑘 have any 𝐻 

( 𝑘, 𝑗 ) 
0 that exceed 𝐹 ∗ 

𝑗 
at any 𝑗 ∈ [ 1 , 𝑡 ] . 

That is, each 𝐹 ∗ 
𝑡 

is chosen to control the cumulative false positive rate

iven all previous 𝐹 ∗ to match the target given by the alpha spending

unction 𝑠 ( 𝑛 𝑡 ) . Since all thresholds 𝐹 ∗ 
𝑡 

depend on the previous thresh-

lds and data, but not on the later thresholds and data, then rejection

hresholds can be computed at the time of each interim analyses 𝑡 , and

ata collection can be halted if 𝐹 𝑡 ≥ 𝐹 ∗ 
𝑡 

. 

As in the parametric case, adjusted 𝛼𝑡 ’s can be obtained from each

 

∗ 
𝑡 

by computing the percentile rank of 𝐹 ∗ 
𝑡 

within 𝐻 

( ∶ , 𝑡 ) 
0 , which is ap-

roximately equivalent to plugging 𝐹 ∗ 
𝑡 

into the empirical cumulative

istribution function of 𝐹 𝑡 under the null hypothesis. 

.3. Simulation studies 

.3.1. False positive rate simulations 

First, we validate the permutation scheme by estimating the false

ositive rate for a univariate test by Monte Carlo simulation. In partic-

lar, on each simulation, we generate 500 random variables from the

tandard Normal distribution. We then compare two approaches. (1) In

 simulated optional stopping procedure, we compute a p- value using

 two-sided, one-sample permutation t- test with 1024 permutations at

ach of 𝑛 = 100 , 200 , 300 , 400 , 500 , and we reject the null hypotheses

f 𝑝 ≤ 0 . 05 at any of these interim analyses. Estimating the false positive

ate as the proportion of 10,000 simulations in which the null hypothesis

as erroneously rejected, the false positive rate of this optional stopping

rocedure should be about 0.142 ( Armitage et al., 1969 ). (2) We per-

orm the same interim analyses, but we compute adjusted significance

hresholds using the permutation alpha spending procedure described

bove with a linear spending function. Then, we only reject the null hy-

othesis if a test statistic exceeds the adjusted threshold at an interim

nalysis. This procedure should result in a false positive rate of approx-

mately 𝛼 = 0 . 05 . 
We additionally perform the above simulations for a between-sample

est, in which the simulated observations are randomly assigned to one

f two conditions and an independent samples permutation t -test is used

o compare between conditions. 

We also verify that this procedure still controls the false positive

ate for more sophisticated test statistics (e.g. one actually used on ef-

ect maps in neuroimaging). This time, we repeat all the above simu-

ations but instead of generating random observations of one variable,

e generate observations from 100 variables (i.e. “voxels ”) resulting

n 100 different tests at each interim analysis. We control for multiple

omparisons at each look time using a t -max procedure ( Nichols and

olmes, 2002 ). (1) In the optional stopping procedure, we reject the

ull hypothesis if a t- max adjusted p -value (from any of the 100 tests) is

ess than or equal to 0.05 at any interim analysis. (2) In the sequential

nalysis procedure, we compute adjusted significance levels using per-

utation alpha spending with the t -max statistic, and we only reject the

ull hypothesis if a t -max adjusted p- value is less than or equal to those

djusted thresholds. 

Finally, since the simulations described above use standard normal

andom variates, but we are also interested in cases where the data may

e non-normally distributed, we also perform paired- and independent-

ample t- max simulations as described above using chi-squared random

ariables with five degrees of freedom. Since the values in a power

pectrum computed with the Fourier transform theoretically follow a

hi-squared distribution, this is actually quite a typical family of distri-

utions to encounter in M/EEG data analysis. 

Note that, since the Type I error rate of the t- max procedure does

ot depend on the correlation between voxel-level tests ( Smith and

ichols, 2009 ), we use independent tests here for computational ex-

ediency. The Type II error rate (i.e. power), however, is sensitive to

he correlation structure of the data, so we use real EEG data in the

imulations that follow (see Section 2.3.2 below). 
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.3.2. Power/efficiency simulations 

To assess the efficiency of sequential designs relative to fixed-

ample designs, we ran power analyses for detecting seven canonical

EG event-related potential (ERP) effects from the ERP CORE dataset

 Kappenman et al., 2021 ) using both types of design. Specifically, we

sed the lowpass-filtered versions of the precomputed difference waves

or each ERP effect provided in ERP CORE. The dataset contains data

rom 40 healthy subjects for each ERP effect, though some of the sub-

ects are excluded from certain ERP effects for low quality data. See the

RP CORE reference paper for a full description of data collection and

reprocessing ( Kappenman et al., 2021 ). 

To estimate the statistical power for a given sample size 𝑛 , we

se a resampling technique. Specifically, we use a modified Bayesian

ootstrap, which differs from the frequentist bootstrap in that it simu-

ates draws from the posterior distribution (with uninformative priors)

f a parameter instead of the sampling distribution of that parameter

 Rubin, 1981 ). Strictly speaking, the frequentist bootstrap is a special

ase of the Bayesian bootstrap in which the original observations are

esampled with the same probability on every bootstrap resampling;

he Bayesian bootstrap draws the new resampling probabilities from a

irichlet distribution on each bootstrap resampling. The result is that

the Bayesian bootstrap can be thought of as a smoothed version of

he Efron bootstrap ” ( Lancaster, 2003 ), generally yielding more stable

esults when resampling from smaller pools of observations – though

t asymptotically converges with the frequentist bootstrap. Estimating

ower by Bayesian bootstrap lends itself to interpretation as a non-

arametric Bayesian predictive power ( Spiegelhalter et al., 1986 ), which

ppropriately accounts for uncertainty about the effect size in estimat-

ng the power of a frequentist test. 

On each simulation (i.e. bootstrap resample), then, we resample 𝑛

bservations from the original 40 observations and run our statistical

est. Power is estimated as the proportion of simulations in which the

ull hypothesis is rejected. 

For each ERP effect, we estimate the statistical power of a fixed-

ample design with 𝑛 = 30 . Then, we estimate the maximum sample size

 𝑇 needed to obtain the same power using a sequential design – with a

ingle interim analysis performed midway through data collection and a

ocock spending function – by obtaining the necessary inflation factor

see Section 2.1.2 ) from rpact ( Wassmer and Pahlke, 2020 ). We then

stimate the statistical power of the sequential design in the same man-

er (i.e. the proportion of simulations in which the null hypothesis is

ejected at either the interim or maximum sample size), and we ad-

itionally estimate the expected sample size (see Section 2.1.2 ) as the

verage of the sample size at which “data collection ” was terminated

either because the null hypothesis was rejected or the simulated study

as completed without rejecting the null) across all simulations. 

Since the ERP CORE consists of highly optimized EEG paradigms,

esigned to maximally elicit the ERP effect of interest, it is sometimes

he case that every subject in the dataset shows the effect individually.

f this is the case, our bootstrap procedure might estimate a power of

, which is not informative for our purposes since an inflation factor

annot be computed for a design of power 1. So, when this occurs, we

odify the bootstrap procedure as follows. After drawing our 𝑛 resam-

les from the original observations on each bootstrap simulation, we

enerate a 𝑛 noise time series (see next paragraph for noise generation

rocedure) and add them to the 𝑛 samples. If this addition of noise was

ot sufficient to decrease power to be less than 1, we ran the simula-

ions again, multiplying the noise by 2. If this failed, we multiplied the

oise by 3. No effect required noise be multiplied by a factor greater

han 3. The exact noise multipliers used for each effect can be found in

ur archived results (see Section 2.4 : Data and Code Availability ). 

To generate noise, we estimate the covariance (between sensors) ma-

rix of the grand-averaged difference wave for the ERP effect; then, we

enerate spatially colored multivariate Gaussian white noise using this

ovariance matrix so as to maximally interfere with the effect of inter-

st. We then lowpass filtered the noise to match the ERP data (which
5 
as filtered at 20 Hz), which created temporal autocorrelation in the

ltered signal. 

10,000 bootstrap simulations were performed as above for each ERP

ffect using both a t -max test and a cluster-based permutation test (with

 clustering threshold of 𝑡 = 2 ), both with 1024 permutations. After run-

ing all simulations, (a) we compared the power of the fixed sample de-

igns to that of the sequential designs, which should have a 1:1 relation-

hip if the inflation factors adequately predict the sample size required

o match the power of a fixed sample design. (b) Then, we assess the

fficiency of the sequential designs by comparing their expected sample

izes to the fixed sample size, which is always 30. 

.4. Data and code availability 

Our implementations of permutation alpha spending for cluster-

ased permutation tests, threshold-free cluster enhancement, t- max,

- max, r- max, and the network-based statistic are contained in our

ser-friendly Python package niseq , which can be installed from the

ython package index (PyPI). Documentation is hosted on Read the Docs

 http://niseq.readthedocs.io/ ). Source code, as well as worked exam-

les using the package on EEG and fMRI data in conjunction with the

NE-Python ( Gramfort et al., 2014 ) and nilearn packages, are available

n GitHub ( https://github.com/john-veillette/niseq ) and permanently

rchived on Zenodo. The most recent release as of writing (v0.0.2) is

vailable at https://doi.org/10.5281/zenodo.7526535 and the current

elease is always archived at https://doi.org/10.5281/zenodo.7517285 .

The code used for the simulations featured in this article, as well

s the results of those simulations and a record of the simulation

arameters, are available separately on GitHub ( https://github.com/

ohn- veillette/niseq- simulations ) and are permanently archived on Zen-

do ( https://doi.org/10.5281/zenodo.7666443 ). 

The data used for simulations was originally taken from

he ERP CORE repository on the Open Science Framework

 https://doi.org/10.18115/D5JW4R ). However, we exported the

reprocessed difference waves into a file format that could be easily

oaded with MNE-Python, which we provide for convenience in the

ame Zenodo archive as our simulation code. 

.5. Ethics statement 

The ERP CORE dataset used in our simulations was collected

ith approval from the Institutional Review Board at the University

f California, Davis, and all participants provided informed consent

 Kappenman et al., 2021 ). Similarly, the Brainomics dataset used in the

utorial example was collected with approval from a regional ethics com-

ittee (Hopital de Bicêtre, France), and all subjects provided informed

onsent ( Papadopoulos Orfanos et al., 2017 ; Pinel et al., 2007 ). 

. Results 

.1. False positive rates 

Permutation alpha spending controls the false positive rate below

he specified 𝛼 = 0 . 05 across multiple interim analyses for single per-

utation t- tests, and it controls the familywise error rate in a sequential

- max procedure (see Table 1 ). In contrast, permutation t -tests and t- max

ith optional stopping results in inflated false positive rates. 

Notably, how to best correct for multiple comparisons in group se-

uential designs with multiple outcomes of interest is still an active

opic of research in the clinical trial literature ( Glimm et al., 2010 ;

osorok et al., 2004 ; Tang and Geller, 1999 ). Interestingly, even when

ontrolling for multiple comparisons at each interim analysis, out sim-

lations suggest false positive rate inflation due to optional stopping

s worsened in a multiple testing setting. Sequential t -max provides a

olution to this problem that can scale to hundreds and thousands of

rbitrarily correlated tests. 

http://niseq.readthedocs.io/
https://github.com/john-veillette/niseq
https://doi.org/10.5281/zenodo.7526535
https://doi.org/10.5281/zenodo.7517285
https://github.com/john-veillette/niseq-simulations
https://doi.org/10.5281/zenodo.7666443
https://doi.org/10.18115/D5JW4R
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Table 1 

False positive rates for optional stopping and for permutation alpha spending procedures with five interim analyses. For t - 

max, the false positive rate reported is a familywise error rate (probability of at least one Type I error across 100 tests and 

five interim analyses). 

One sample 

(univariate) 

One sample 

( t -max) 

Paired ( t- max, 

chi-square) 

Independent 

(univariate) 

Independent 

( t- max) 

Independent 

( t- max, chi-square) 

Optional stopping 0.1442 0.1784 0.1794 0.1402 0.1715 0.1812 

Alpha spending 0.0470 0.0439 0.0452 0.0465 0.0458 0.0486 

Fig. 3. Results of power simulations. (a and c) Power for detecting ERP effects compared between fixed-sample designs with 𝑛 f ixed = 30 and sequential designs with 

one interim analysis, a Pocock spending function, and 𝑛 max = 30 × IF , where IF is an inflation factor known a priori (see Section 2.1.2 ). (b and d) The expected 

sample size of the sequential designs as a function of statistical power for detecting the effect of interest, compared to the corresponding sample-size vs. power curve 

for parametric sequential designs, which may be considered a lower limit for expected sample size. ( a) and (b) show the results for a t- max test, while (c) and (d) 

show the results for a cluster-based permutation test. In all panels, each dot color corresponds to a different ERP effect in the ERP CORE dataset, see legend in (a). 
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.2. Efficiency relative to fixed-sample designs 

The results of our power simulations for fixed-sample and sequential

esigns are illustrated in Fig. 3 . When we set the maximum sample size

or each sequential design by multiplying the sample size of the fixed-

ample design (always 𝑛 f ixed = 30 ) by the appropriate inflation factor,

e obtain a design with roughly matched power (see Fig. 3a and 3c ). In

ther words, the inflation factors used for parametric sequential designs

eem applicable to our approach. 

When the study design is well-powered for detecting an effect, the

xpected sample size is smaller because the probability of rejecting the

ull hypothesis at an interim analysis is higher Consequently, for suf-

ciently well-powered designs, we see up to > 30% sample size saving

ompared to a fixed-sample design with the same power (see Fig. 3b and

d ). Conversely, if power is very low, then the study will often run to

ompletion without detecting the effect and the expected sample size

ill be close to the maximum sample size, which is greater than the
6 
xed sample size. While we do see efficiency gains over fixed-sample

esigns, we find that permutation alpha spending is not as efficient

s parametric alpha spending (see Fig. 3b and 2d ); this is to be ex-

ected, as parametric methods are generally more efficient than non-

arametric methods when their assumptions are met. For the statis-

ical tests used in these simulations ( t- max and cluster-based permu-

ation tests), the assumptions of parametric alpha spending are not

et, but we show the theoretical curve as a lower bound on the ex-

ected sample sizes we could in-principle anticipate from our per-

utation approach. Interestingly, cluster-based permutation tests are

loser to the lower bound than is the t- max procedure, so the effi-

iency gains one can expect from permutation alpha spending may

epend on the statistical test used, in contrast to parametric alpha

pending (where relative efficiency depends only on the design parame-

ers, e.g. spending function and number of interim analyses). However,

ains should always be seen when the probability of early rejection

s high. 
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In these simulations, we used a Pocock spending function, resulting

n a more generous interim significance threshold than, for instance, an

’Brien-Fleming spending function, which spends more of the false pos-

tive rate later on during data collection. Please note, however, that the

hoice of spending function does affect the inflation factor and expected

ample size of sequential designs, so these simulation results would vary

etween different spending functions. O’Brien-Fleming, for instance,

ends to result in lower expected sample sizes than does Pocock, as it

aves Type I error for interim sample sizes with more per-analysis sta-

istical power. (However, it features lower alpha thresholds early on,

hich require more permutations to compute low enough p- values to

eject – see 4.4 Limitations of the Present Approach. ) 

. Discussion 

.1. Use cases of sequential testing for neuroimaging 

We anticipate at least several main use cases for permutation alpha

pending in human neuroscience, as mentioned in the introduction: 

1. A researcher does not have any reasonable means of running an a

priori power analysis. Instead, they select a conservative maximum

sample size they would be willing to collect, but they use permu-

tation alpha spending to perform interim analyses throughout data

collection while controlling their false positive rate. If the effect size

ends up being large enough to detect with a smaller sample size, they

will likely be able to stop data collection early. 

2. A researcher has no reasonable means of running an a priori power

analysis. Instead, they select an initial maximum sample size, and

they perform a conditional power analysis by bootstrap after the first

interim analysis, which they use to adjust their maximum sample

size midway through data collection so as to achieve some desired

power. In this way, they get to conduct a power analysis on the ba-

sis of some internal pilot data, but if the pilot data alone provide

enough evidence to reject the null hypothesis, they need not collect

any additional data. 

3. A researcher has conducted a power analysis for a fixed-sample de-

sign, but they found that they need to collect a very large sample size,

so they wish take advantage of the efficiency gains afforded by a se-

quential design. To this end, they use an inflation factor to convert

the fixed-sample design for which they’ve already done a sample size

calculation into similarly-powered sequential design with several in-

terim analyses. Now, if they find there is already enough evidence to

reject the null hypothesis at an interim analysis, they may stop data

collection early. 

In Example 2, the researcher could conduct a power analysis very

imilarly to how we have conducted the power analyses above. How-

ver, a conditional power analysis differs somewhat from an a pri-

ri power analysis in that it estimates the probability of a given

esign rejecting the null hypothesis given the data already collected

 Spiegelhalter et al., 1986 ) . We have included an (experimental) module

or estimating conditional power by Bayesian bootstrap ( Rubin, 1981 )

n our Python package, though only power analyses for one-sample (or

aired-sample) tests are implemented at time of writing. 

Also note that, if one adjusts the maximum sample size midway

hrough, the alpha spending function must be adjusted accordingly to

eflect the new design or the false positive rate will not be controlled

 Lakens et al., 2021 ). One would similarly need to change the alpha

pending function if, for example, they end up collecting fewer observa-

ions than their originally intended maximum sample size due to prac-

ical constraints. We provide an example of how to adjust one’s alpha

pending function mid-experiment on our package’s GitHub and Zenodo

epositories. 

Even the researcher in the second example above may wish to run

 conditional power analysis during their study if they estimated their

ample size based on a previously published study, since that previous
7 
tudy may have overestimated its effect size as a result of low statistical

ower, publication bias, or selective reporting (e.g. reporting the effect

izes within significant clusters in a fMRI study) ( Poldrack et al., 2017 ).

he ability to adjust one’s design on the basis of a conditional power

nalysis affords more options for navigating biases in the published lit-

rature while designing their own, well-powered study. 

.2. Power analyses, effect sizes, and sample size justification 

While sequential designs offer an alternative to a priori sample size

lanning, it is often still desirable to perform some kind of power anal-

sis to justify the prespecified maximum sample size (though it is not

he only way to justify a sample size, as discussed at the end of this

ection). If it is possible to run an a priori power analysis for a fixed-

ample design, then one can simply use an inflation factor to obtain the

aximum sample size for their planned sequential design. If not, one

an use a bootstrap conditional power calculation at an interim analysis

nd adjust the maximum sample size accordingly, or they can justify the

aximum sample size based on a resource constraint (e.g. study budget,

ime constraint) or an implicit minimum effect size of interest. 

As we have mentioned throughout this report, there is often not an

bvious way to conduct a power analysis for the non-parametric tests we

ave discussed. Since the test statistics used (e.g. cluster mass) generally

o not correspond to any standardized effect size, and the way the p -

alue is computed does not rely on distributional assumptions, usually

he only way to estimate statistical power is by simulation – either by

esampling from existing data or by using synthetic data. 

In the resampling case, one conducts a power analysis based on the

effect size ” implicit in some already collected data. Why implicit? Tra-

itional power analyses are based on effect sizes (often, but not neces-

arily on a standardized scale) which importantly are not dependent on

he size of the sample from which it was computed ( Fritz et al., 2012 ;

ühberger et al., 2014 ). For permutation tests, there may not be a way

f quantifying an effect size for the test statistic that is not dependent

n the sample size; even if there is, defining an effect size of theoreti-

al interest is usually challenging. For example, the cluster-mass statis-

ic in a cluster-based permutation test (or the network-based statistic)

annot be called a standardized effect size, since the extent of clusters

epends both on the sample size and on a number of computational pa-

ameters ( Meyer et al., 2021 ; Sassenhagen and Draschkow, 2019 ). In

he literature, some researchers have used bootstrap resampling from

reviously collected data to estimate the power of proposed sample-

izes ( Ruzzoli et al., 2019 ), much in the same way we used boot-

trap resampling to estimate power in our simulation here (see 2.3.2.

ower/efficiency simulations). This approach implicitly incorporates ef-

ect size information from the original dataset, but it does so in a way

hat accounts for the dependency between the test statistic (e.g. clus-

er statistic) and the sample size by running a full permutation test on

ach bootstrap resample (at each sample size for which one wishes to

stimate power). 

However, any approach that involves estimating power based on the

ffect size measured in a previous study should take into consideration

he intrinsic variability of effect size measurements. For instance, even

ffect size estimates do not become stable (i.e. likely to stay within a rea-

onable range of the estimate if more samples are added) until sample

izes are already quite large – larger, indeed, than would normally be

equired to reject the null hypothesis ( Schönbrodt and Perugini, 2013 ).

s such, it is usually inadvisable to conduct a conditional power analysis

arly on in data collection; it is better to wait until the interim sample

ize is somewhat substantial. In this setting, sequential analyses that uti-

ize conditional power analyses (as in the third example in Section 4.1 )

an be particularly useful. One can use, for instance, the first 50 sam-

les to estimate the conditional power of rejecting the null hypothe-

is by the time the maximum sample size is collected, given the data

hich has already been collected, by bootstrap resampling. However, if

nough evidence has already been accrued to reject the null hypothe-
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is at this interim analysis, no further data collection needs to be done.

his approach (while computationally burdensome) allows sample size

alculations from “pilot ” data that is internal to the study sample it-

elf, rather than requiring a separate (costly) pilot sample. Bootstrap

onditional power analyses (using the procedure described in 2.3.2) are

mplemented in the “power ” module of the niseq package for all one-

ample and paired-sample tests in the package, and we hope to add

upport for independent sample and correlational designs too. 

Another approach is to use synthetic data, such as a statistical map

enerated from a meta-analysis ( Yarkoni et al., 2011 ), a predictive

odel ( Dockès et al., 2020 ), or a formal theoretical/computational

odel, and compute a power analysis by simulation (adding noise to

he predicted effect map on each simulation). 

Or alternatively, if the goal of the study is the fit a predictive model

hat predicts a single behavioral outcome from whole-brain patterns

 Kragel et al., 2018 ), rather than running a separate univariate test on

very voxel in the brain, then a better approach may be to specify a min-

mum effect size of interest , which is not dependent on a noisy estimate

rom previous data but on some metric of (e.g. clinical) importance. 

And lastly, it is also acceptable to justify one’s maximum sample size

n a sequential design based on a resource constraint rather than on a

ower analysis ( Lakens, 2022a ). For example, “We used a sequential de-

ign with a maximum sample size of 80, after which the cost of collecting

ubjects would outstrip the budget allocated for this research project. ”

lternatively, one might consider a specification of a maximum sam-

le size to implicitly reveal the minimum effect size of interest – as in,

n effect is not large enough to be of interest unless it is large enough

o be detected with fewer than n subjects. (For instance, if more than

 subjects are required to detect an effect, then the researcher would

e unlikely to pursue that effect in future work, choosing to focus on

omething more cost-efficient to study.) In any event, it is not always

trictly necessary to perform a power analyses for sample size justifica-

ion depending on the goals of the study. (If the goal is to defend a null

esult, for instance, then it may be necessary, but perhaps not for an ex-

loratory study.) In any event, researchers should transparently report

ow they determined their maximum sample size, even if that sample

ize is arbitrary. 

.3. Stopping for futility 

In the simulations we feature in this article, we assume that data

ollection continues until the specified maximum sample size unless the

ull hypothesis is rejected at an interim analysis. Another option, how-

ver, is to run a conditional power analysis after the first (or any/each)

nterim analysis to estimate the probability of rejecting the null hypoth-

sis if the design is run to completion. If this power falls below some

predetermined) threshold, then one might choose to stop the study for

utility, rather than waste resources by continuing ( Lan and Trost, 1997 ).

n this case, one might achieve even greater sample size savings than we

ave described above. 

If conditional power is estimated either from an effect size computed

rom the data that has already been collected or by resampling from that

ata (as implemented in niseq’s “power ” module), then the resulting

ower estimate is interpreted as the probability of detecting any effect at

ll if the current trend in the data continues. This approach is relatively

ommon in the clinical trial literature ( Lachin, 2005 ; Snapinn et al.,

006 ), and we think it is reasonable for exploratory neuroimaging stud-

es. However, if a researcher aims to detect a specific effect – for instance,

erformance of a whole-brain predictive model that is high enough to

e clinically useful – then it would make more sense to compute condi-

ional power for that smallest effect size of interest. Similarly, if one has

 specific hypothesis related to some region-of-interest, it may not make

ense to run a power analysis as if one cared equally about the whole

rain. 

However, it is important to note that including a stopping rule for

utility in one’s design may affect the statistical power of the design.
8 
ee work by Lakens and colleagues for a somewhat more thorough dis-

ussion ( Albers and Lakens, 2018 ; Lakens, 2014 ; Lakens et al., 2021 ;

akens and Evers, 2014 ). Moreover, the effective false positive rate will

nd up below the specified significance level, since the study is termi-

ated before all Type I error is “spent ” ( Lachin, 2005 ). Whether one

an “reclaim ” the lost Type I error is an active area of research in the

pplication of parametric alpha spending ( Snapinn et al., 2006 ), but

he extent to which solutions used in the parametric setting extend to

he permutation case requires more research. In principle, it is possi-

le to estimate these effects by simulation, but this would require sub-

tantial computation (since power analyses would be nested within a

arger power analysis, and the above simulations already took a great

eal of compute time). We hope to develop this area more thoroughly

n the future, as we believe the principled use of futility stopping rules

n sequential designs stands to greatly reduce the cost of neuroimaging

esearch. 

.4. Reporting the results of a sequential analysis 

There are not yet uniformly agreed-upon standards for reporting the

esults of sequential analyses. However, sequential analyses should re-

ort, minimally, the spending function used, the time of all interim anal-

ses performed, the adjusted significance thresholds and value of the

lpha spending function at each analysis, and the p -values observed at

ach analysis. In the case of t- max and other max-type procedure, as

ell as with threshold-free cluster enhancement, in which each voxel is

ssigned a p -value, we suggest reporting the smallest p -value obtained

t each interim analysis and reporting full results for the time at which

ata collection was stopped. See the parametric alpha spending tutorial

y Lakens and colleagues for more discussion ( Lakens et al., 2021 ). 

Note that it has been suggested that sequential analyses should be

re-registered for the sake of transparency ( Lakens, 2014 ), which may

e helpful in providing evidence that one did not change their design

arameters in the analysis stage. Since the number and timing of interim

nalyses does not need to be determined a priori for the alpha spending

rocedure to control the false positive rate, then it is sufficient to specify

 statistical test, an alpha spending function, a maximum sample size,

nd whether a stopping rule for futility will be used. However, it is also

elpful to specify tentative interim analysis times, even though these

ay be altered without issue later on. 

.5. Multiple testing in fixed-sample and sequential designs 

As illustrated in our simulations, permutation alpha spending can

ontrol the familywise false positive rate across an arbitrary number

f statistical tests conducted in parallel when combined with any exist-

ng permutation-based multiple comparisons correction. Here, we have

ighlighted interoperability with t- max and cluster-based corrections,

hich are paradigmatic of the two primary approaches to multiple com-

arisons correction in neuroimaging: voxel-level and cluster-level. In

oth cases, permutation alpha spending works by finding a rejection

hreshold at each interim analysis that controls the familywise error rate

across all sequential analyses) instead of the error rate of any one test

voxel). 

In voxel-level inference, control of the familywise error rate is

chieved by adjusting the all voxels’ rejection threshold such that

he probability of falsely rejecting the null hypothesis at any voxel

s contained below the target error rate. A simple approach to com-

ute the adjusted threshold is the well-known Bonferroni correction, in

hich the required adjustment is purely a function of the number of

ests performed, as the correction assumes v independent comparisons

 Miller, 2012 ). In the event that the v statistical tests are correlated (as in

he case almost all neuroimaging settings), the actual “effective ” num-

er of comparisons can be thought of as less than v ; consequently, neu-

oimaging researchers have long favored corrections that account for au-

ocorrelation across space, time, and/or frequency. While there are (still
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opular) parametric approaches to this problem ( Friston et al., 1994 ),

hich make some assumptions about the autocorrelation structure of

he data, it has been known for decades that permutation-based cor-

ections have the potential to outperform parametric ones by implicitly

stimating the dependency between tests from the data ( Holmes et al.,

996 ). The popular t- max correction, for instance, is a permutation test

hat uses the maximum t -statistic observed across all voxels in the volume

f interest on each permutation to construct the permutation null dis-

ribution (obtained by randomly shuffling the observations); individual

oxel t -statistics are then compared to the maximum t null distribution

ather than the null distribution for that voxel, and “corrected ” p -values

re assigned as the percentage rank of a voxel’s observed test statistic in

hat null distribution ( Nichols and Holmes, 2002 ). This ensures that the

robability of any voxel’s corrected p -value falling below the specified

ignificance level at the desired familywise error rate. In the sequential

ase, the joint null distribution of the maximum t statistic across all in-

erim analyses is used to find adjusted significance levels as described

n Section 2.2 ; thus, each p -value is compared to the alpha-spending-

djusted threshold, which additionally accounts for the correlation be-

ween tests statistics across sequential analyses. 

In a typical cluster-level approach, a clustering threshold is deter-

ined a priori (and somewhat arbitrarily), often set to the value at

hich an individual voxel would be labelled “significant ” without a cor-

ection for multiple comparisons. Then, within each cluster of above-

hreshold contiguous voxels, the voxel-level test statistics are aggre-

ated (usually summed, or in the case of the network-based statistic,

hich is essentially a cluster-based test, the number of included edges

re counted) to produce a cluster mass statistic. Instead of comparing

ach voxel to a null distribution, a p -value is assigned to each as the per-

entile rank of the observed cluster mass statistic compared to a null dis-

ribution computed across many random shuffles of the data ( Maris and

ostenveld, 2007 ). By abstracting inference to the cluster level in this

ay, one tends to gain statistical power by reducing what would be

any voxel-level tests to, effectively, a single test, one loses the abil-

ty to make precise inferences about the voxel-level locus of the effect

 Sassenhagen and Draschkow, 2019 ). Again, the only modification in the

equential case is that each clusters’ p -value is compared to the adjusted

ignificance threshold computed using the alpha spending approach in-

tead of the nominal significance level. 

In this way, sequential alpha spending can be combined with any

ermutation-based approach to controlling the familywise error rate

hat yields “corrected ” p -values computed as a percentage rank in a per-

utation null distribution. The resulting rejection thresholds control the

amilywise error rate across all interim analyses (i.e. the probability of

etting any false positives at all throughout the whole procedure). See

ection 4.5 , however, for limitations of using the sequential approach

n conjunction with multiple comparisons correction. 

.6. Limitations of the present approach 

The present approach has a number of limitations that are worth

iscussing. 

If one stops data collection for a neuroimaging study as soon as one

ccrues enough evidence to reject the null hypothesis on the basis of

 cluster (e.g. in a cluster-level test) or a voxel (e.g. in a t- max proce-

ure), one might miss other, more weakly activated clusters or voxels

lsewhere in the data. In principle, this is also a limitation of fixed-

ample designs with low statistical power, so a well-powered sequential

esign, we think, is still usually preferable to arbitrary or heuristic sam-

le size determination. Moreover, unlike a fixed-sample design in which

he sample size is (supposed to be) set in stone at the time of analysis, a

equential design allows one to keep collecting data even after the null

ypothesis is rejected. In this way, if the researcher sees a cluster that

as “trending toward significance ” at the time they rejected the null

ased on a stronger cluster, they can continue to collect data until they

each their prespecified maximum sample size before concluding that
9 
hey failed to reject the null. This possibility is illustrated in the fMRI

xample below. 

Further, when a sequential design stops at an interim analysis, there

s a risk that the test statistic crossed the rejection threshold because, due

o random variation, the effect size was overestimated at that interim

ample size. This does not inflate the false positive rate, as this risk is

ccounted for in the null distribution, but may result in biased effect size

stimates for sequential designs. This may, however, be less of a prob-

em for permutation alpha spending than for parametric alpha spending,

ecause the exact numerical value of the test statistic used in the per-

utation test (e.g. cluster mass) is usually not directly of interest in neu-

oimaging studies. Moreover, this bias is washed out in meta-analyses,

ince effect sizes measured in studies that are terminated early are bal-

nced out by those that ran to completion ( Schönbrodt et al., 2017 ).

his fact underscores the importance of sharing unthresholded statisti-

al maps from neuroimaging studies, which can be hosted on platforms

uch as NeuroVault to facilitate future metanalyses ( Gorgolewski et al.,

016 ). 

Both of the above issues can also be optionally alleviated, if a re-

earcher wishes, by continuing to collect data past the interim analysis

t which the null hypothesis is rejected. There is nothing stopping data

ollection after the null hypothesis has already been rejected in the in-

erest of yielding better estimates of the effect of interest – or, better yet,

stimating that effect in an independent sample. 

Finally, with any permutation-based method, one requires a suffi-

iently large sample size for valid inference. For instance, the number of

ossible permutations for a one-sample permutation test with 𝑛 = 5 ob-

ervations is 2 5 = 32 , which is far too small; the lowest p-value one could

ossibly compute with that few permutations is 1/32 = 0.031. Thus, an

nterim analysis at 𝑛 = 5 has no chance of rejecting the null hypothe-

is if the adjusted significance threshold for that analysis is lower than

.031 and still a substantially reduced chance otherwise. Researchers

hould ensure that the number of possible permutations at their small-

st interim sample size is sufficient to reject the null hypothesis at the

djusted significance level determined by their alpha spending function.

.7. The Bayesian alternative 

Frequentist approaches multiple testing and to sequential hypothe-

is testing, as featured here, are often compared to approaches that use

ayes factors. It is often claimed that Bayesian statistical approaches

uffer from neither a multiple comparisons problem nor a problem with

ptional stopping. Since our approach applies (frequentist) sequential

ests in a multiple testing context, it is worth addressing both these

laims separately, as the error rate properties of Bayesian approaches

re more nuanced than some proponents in applied fields argue. 

Discussions of the multiple comparisons problem can be obfuscated

y differences in the frequentist and Bayesian philosophies. Bayesian

tatistics does not aim to make binary decisions; a Bayesian never “re-

ects ” a hypothesis on the basis of new data, but merely adjusts the

osterior likelihood assigned to each possible hypothesis. In that triv-

al sense, the idealized Bayesian never suffers from inflated false posi-

ive rates; one cannot make an error when one is not making any hard

ecisions. However, one can still consider the frequentist (error rate)

roperties of a Bayesian estimator, and indeed such evaluations are con-

idered useful performance metrics by practicing Bayesian statisticians

 Gelman and Carlin, 2014 ). 

In this setting, the answer to whether Bayesian approaches suffer

rom a multiple comparisons problem amounts to “it depends. ” For in-

tance, the authors of one paper frequently cited to support to claim

hat there is no Bayesian multiple comparisons problem ( Gelman et al.,

012 ), also make clear that the desirable error rate properties of

ayesian approaches only apply in the context of hierarchical models

hat account for the interdependency between the measured variables

e.g. voxels) explicitly, rather than to approaches that would treat each

ariable as a separate test ( Gelman and Tuerlinckx, 2000 ). In the context
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f neuroimaging, this amounts to a spatially autoregressive model that

iases the estimates at neighboring voxels toward each other, thus ac-

ounting for multiple comparisons by shrinking the effect size estimates

in contrast to a frequentist approach which accounts for multiple com-

arisons by increasing the width of the confidence interval (i.e. adjusting

he p -value) ( Lindquist et al., 2009 ). In other words, replacing the mass-

nivariate t- test with a mass-univariate Bayes factor analysis would not

olve the multiple comparisons problem in neuroimaging, but using

n autoregressive model with regularizing priors might ( Harrison and

reen, 2010 ). Since Bayes factors do not lend themselves to an obvi-

us correction for multiple comparisons (outside of a frequentist frame-

ork), they tend to be inapplicable to the mass-univariate voxel-level

nference employed in many neuroimaging studies. Moreover, there is

ot, to our knowledge, a Bayes factor approach to cluster-level infer-

nce that does not depend on strong parametric assumptions such as

hose entailed by random field theory ( Friston et al., 2002 ). 

Similarly, it is often claimed that Bayes factors allow for optional

topping. It is true, in many cases, that the interpretation of a Bayes

actor as a measure of relative evidence for competing hypotheses is

ot affected by the stopping rule used during sequential data collec-

ion ( Rouder, 2014 ); but also see ( de Heide and Grünwald, 2021 ). How-

ver, Bayes factors do not provide error rate guarantees, and inflated

alse positive rates (in the frequentist sense) can occur when using

 Bayes factor threshold as a stopping rule for sequential hypothesis

esting ( Schönbrodt et al., 2017 ); thus, the stopping rule (threshold)

eeds to be calibrated by simulation to ensure reasonable error rates

 Schönbrodt and Wagenmakers, 2018 ). Thus, Bayes factors have the

dvantage that they are interpretable measures of evidence, unlike p -

alues ( Lakens, 2022b ), but they do not provide the strong error rate

uarantees as do frequentist approaches. 

Interestingly, the fact that permutation alpha spending is valid with

rbitrary test statistics open the door to combining frequentist and

ayesian sequential test procedures. If a Bayes factor is employed as a

est statistic in a frequentist sequential test, then strong error rate guar-

ntees will still hold, but the final observed Bayes factor will serve as an

nterpretable measure of evidence, unbiased by the sequential stopping

ule ( Rouder, 2014 ), unlike a typical effect size measure at the end of a

equential procedure (see Section 4.7 ). In a neuroimaging context, this

ould entail replacing the voxel-level t- test with a Bayes factor anal-

sis, and using either a sequential cluster test or sequential max-type

orrection as described in this report. 

.8. The niseq package 

We introduce a Python package, called “niseq, ” geared toward ap-

lying the permutation alpha spending approach to M/EEG, fMRI, and

onnectivity data (although the sequential test implementations could

e used on other datatypes as well). At time of writing, the package in-

ludes sequential implementations of t -max (as well as other max-type

ests, e.g. F- max and r- max) ( Nichols and Holmes, 2002 ), cluster-based

ermutation tests ( Maris and Oostenveld, 2007 ), and threshold-free clus-

er enhancement ( Smith and Nichols, 2009 ). Since the network-based

tatistic (NBS) ( Zalesky et al., 2010 ) is simply a cluster-based permu-

ation test applied to subnetworks (clusters) of connected graph edges,

 sequential version of this procedure can also be easily applied with

iseq. In the package repository (see Data and Code Availability), nu-

erous tutorial examples are provided for all of these tests using M/EEG,

MRI, and connectivity data. (Niseq also contains an in-development

niseq.power ” module for running prospective and conditional power

nalyses by bootstrap, but it is currently only compatible with one-tailed

ests available in the package; at time of writing, it should be considered

xperimental. The focus of the package, at the moment, is on permuta-

ion alpha spending itself.) 

To minimize friction for users of existing packages in Python’s hu-

an neuroscience ecosystem, we attempted to mirror the MNE-Python

PI as much as possible ( Gramfort et al., 2014 ). We chose to mirror
10 
he MNE API, rather than another package in the neuroimaging ecosys-

em, since MNE’s statistics functions act directly on numerical arrays,

ather than on M/EEG- or MRI-specific data structures (which usually

ontain such arrays internally). Thus, the same API can be used for many

atatypes with minimal hassle. For users familiar with MNE, this means

hat analysis code will only have to be minimally edited (see Fig. 4 ).

or fMRI-oriented users coming from packages in the nipy ecosystem

 Brett et al., 2009 ), data arrays will have to be pulled out of MRI spe-

ific objects, as in the usage example below. 

Imagine a researcher is running an fMRI experiment with the aim of

ocalizing brain activity associated with the calculation task described

y Pinel and colleagues ( Pinel et al., 2007 ). She has received an insti-

utional grant for this study, which can pay for her to collect data from

p to 80 subjects; however, if possible, she would like to collect fewer

bservations to conserve funds. Consequently, she decides to use a se-

uential design with a maximum sample size of 80, and she plans to run

n interim analysis every 10 subjects. 

She is used to analyzing her fMRI data using nilearn

nilearn.github.io). Fortunately, she can conduct her first-level analysis

n nilearn as usual to extract statistical (Z-) maps for each subject, using

he GLM contrast described by Pinel and colleagues. Her workflow

ould only change at the second-level (i.e. group) analysis stage, in

hich she would pull out the data arrays from the nibabel and subject

hem to a permutation test in the niseq package. She uses a one-sample

luster-based permutation test with a clustering threshold of t = 3, and

 significance level of 𝛼 = 0 . 01 to compare her statistical maps to a null

ypothesis in which there is no task-related activation above baseline.

or alpha spending, she uses nilearn’s default spending function, which

s linear. She uses 5000 permutations, so the lowest p -value she can find

t any interim analysis is 1/5000 = 0.0002, ensuring it is possible to

eject the null at the adjusted significance threshold at the first interim

nalysis ( 𝛼 = 0 . 00125 ). This sequential test procedure can be executed

sing the “sequential_cluster_test_1samp ” function in niseq. 

On her first interim analysis at 𝑛 = 10 , the adjusted significance

hreshold is just the value of the spending function ( 𝛼 = 0 . 00125 ).
hough the smallest cluster p -value she computes is below the nominal

ignificance level of 0.01 at 𝑝 = 0 . 008 , it is still higher than the adjusted

ignificance level for the interim analysis and she cannot reject the null

ypothesis. Consequently, she collects another 10 subjects, and she runs

nother interim analysis. The value of the spending function at 𝑛 = 20
s 0.0025, so the permutation procedure described in this paper is used

o find the adjusted significance threshold which contains the cumula-

ive false positive rate to 0.0025 ( 𝛼 = 0 . 0024 ). She finds that her largest

luster now has a p -value below the adjusted threshold for this interim

nalysis (see Fig. 5 ). However, she sees a cluster in parietal cortex that

as nominally significant at 𝛼 = 0 . 01 , but still not significant given the

lpha spending correction. She suspects that this might represent true

rain activity (though she currently does not have enough evidence to

eject the null hypothesis of no brain activity), so she collects another

0 subjects. At 𝑛 = 30 , the permutation procedure finds that an adjusted

ignificance threshold of 𝛼 = 0 . 002 is needed to contain the cumulative

alse positive rate to the spending function’s value of 0.00375. Run-

ing another interim analysis, she finds she now has enough evidence

o reject the null hypothesis on the basis of a cluster containing the

forementioned parietal location as well. Results of this analysis proce-

ure applied to the calculation localizer data in the Brainomics dataset

 Papadopoulos Orfanos et al., 2017 ) can be seen in Fig. 5 , and code to

eproduce the sequential analysis workflow described in this paragraph

an be found at https://doi.org/10.5281/zenodo.7926956 . 

.9. Outlook 

We believe that sequential designs can be a valuable tool as cognitive

euroscientists continue their efforts to improve the statistical power of

euroimaging studies, while balancing costs. Sequential designs provide

ultiple alternative paths to principled sample size determination in the

https://doi.org/10.5281/zenodo.7926956
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Fig. 4. Comparison of MNE-Python and niseq APIs. These code samples run identical cluster-based permutation tests on EEG data using MNE-Python (left) and using 

niseq (right), demonstrating the equivalence between the two APIs. However, the niseq version can be modified to run a sequential test by changing the “look_times ”

and “n_max ” arguments. Niseq’s statistics functions will return a dictionary containing results (in the same format as MNE) for each interim analysis, the lowest 

cluster/voxel p -value at each analysis, as well as the adjusted alphas and value of the alpha spending function at each interim analysis. 

Fig. 5. Example results of a sequential cluster- 

based permutation test with three interim analy- 

ses. Clusters for which the p -value is smaller than 

a given significance level are shaded in black. For 

each interim analysis (row), uncorrected significance 

thresholds are used on the left and alpha spend- 

ing corrected thresholds are used on the right. Tu- 

torial code for reproducing this figure (and walking 

through a sequential analysis workflow for fMRI) us- 

ing data from the Brainomics dataset can be found at 

https://doi.org/10.5281/zenodo.7926956 . 
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vent that conventional, a priori power analyses are difficult to perform.

oreover, even in the event that one can easily perform a power anal-

sis for a well-specified effect of interest, highly-powered studies (e.g.

onfirmatory trials) stand to benefit greatly from the efficiency advan-

ages of sequential designs. Indeed, when each subject costs hundreds or

ven thousands of dollars to run, as in an fMRI study, a greater than 30%

eduction in expected sample size without sacrificing statistical power

see Fig. 3 ) can free up valuable resources for cognitive neuroimaging

abs and their funding agencies. We hope that our permutation-based

pproach to sequential analysis proposed in this article, and our accom-

anying Python package, empower cognitive neuroscience researchers
o conduct more efficient studies. s
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